
MATHEMATICS OF COMPUTATION, VOLUME 24, NUMBER 111, JULY, 1970 

On the Numerical Solution of the Diffusion Equation 
By 0ystein Todenes 

Abstract. A proof given by C. E. Pearson (1] for the asymptotic convergence of the 
numerical solution of the diffusion equation is discussed, and found insufficient. A new, 
direct proof is given. A method given by Pearson, for improving the numerical solution 
when a discontinuity is present in the initial-boundary conditions, is considered in more 
detail. 

1. Introduction. C. E. Pearson [1] has studied the numerical solution of the 
system: 

(l.a) at aX2 ' 

(l.b) u(x, O) = O, O < x < 

(l.c) u(O,t) = I t> 0, 

(l.d) u(l, t) = O 

with special emphasis on the effect of the discontinuity at the point (0, 0). 
The system is approximated with the well-known formula 

(2.a) ui k+l - ui,k = PI 0(u-+, 
- 

2ui,k+l + ui.l k+1) 

+ (1 - )(u+,.k - 2uj, + uf.1,0)1, 

where p = At/Ax2, Ax = I/M, and 0 = 2, and 

(2.b) u =o = 0, = 1, 2, , M - 1, 

(2.c) uoo= P, UO,= 1, k= 1,2, ***. 

(2.d) UM,k = 0, k =0, 1, 2, 

The determination of the optimum value of P is Pearson's main problem. The prob- 
lem is divided into two parts: 

(a) Showing that the effect of P diminishes as k increases, this leads to a considera- 
tion of the asymptotic convergence. 

(b) The value of P is then determined to satisfy an accuracy criterion for "small" k. 

2. Asymptotic Convergence. This problem is treated by Pearson as follows: An 
exact solution of Eq. (l.a) with initial condition 

(3) u(x, 0) = 0, x > 0, 
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and boundary condition (1.c) (semi-infinite rod), is found to be 

u(x, t) = erfc (x/2V\t). 

The first two terms of the asymptotic expansion of erfc (x/2Vt), when t -> co, is 

erfc 
(2Ax 

) 1-/2, 

i.e., 

(4) u (x, t) 7 
- 
2* 

Secondly, a solution of the discrete analogue of the system (l.a), (3), (1 .c), i.e., of (2.a), 
with the initial condition 

(5) Uj o = 0, j = 1, 2, 

and boundary condition (2.c), is found by a sine transform. The first two terms of the 
asymptotic expansion of this solution, when k - co, is found (by a steepest descents 
technique) to be: 

(6) a3,k "I 
j Ax 

k-o (7rk At)'2 

From (4) and (6) Pearson concludes " * * that the numerical solution given by Eq. (2) 
(here Eq. (2.a)) will normally become asymptotically correct, as-n (here k) grows." 

From Pearson's paper,- it is evident that the problem he wants to solve is whether 
the solution of the system (2) converges asymptotically to the solution of the system (1). 
The changes of the initial and boundary conditions, represented by (3) and omission 
of. (l.d), and by (5) and omission of (2.d), done for the sake of computational con- 
venience, also results in changes of the respective solutions. 

The boundary conditions have a decisive effect on the asymptotic convergence, 
see, e.g., Parker and Crank [3], therefore, one cannot from 

lim u; k = lim u(jAx, kAt), 

where u,, k is the solution of the system (2.a), (5), (2.c), and u(x, t) is the solution of the 
system (l.a), (3), (1 .c), conclude that a similar relation holds with an arbitrary other 
set of boundary conditions. Whether such a conclusion holds for special changes on 
the boundary conditions is an open, unanswered question. Therefore, the proof for 
the asymptotic convergence of the solution of the system (2) to the solu-tion -of the 
system (1) is not sufficient. 

The problem can be settled in a direct way, as follows: From Carslaw and Jaeger 
[2, p. 99], we find the solution of the system (1) 

(7) u(x, t)- -x - exp (-i 7r t) sin 1rx 
i-i 1 

and the stationary solution, U(x), is 

(7.a) U(x) = lim u(x, t) = 1-x. 
t-X* 

The system (2) may be written in matrix vector notation as follows: 
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Au, = Buo + b' + b, 

AUk+l = Buk + b, k =1, 2, * , 

where 

A = I + P0QM-l B = I- p(l - O)QM-l, 

-2 1 0 0 . 0 

1 -2 1 0 

QM= 0 0 (M X M), 

1 -2 1 

0 ... .... 0 1 -2 

= pO(P - 1, 0, , 0) , 

b = p(l, 0, ,0), 

Uk = (Ul,k, U2,k, * UM-1,k). 

It should be pointed out that P is introduced in the system by b'. 
The eigenvalues of QM-1: 

Xfl(QM--) = 4 sin2 (nr/2M), n = 1, 2, , M- 1. 

The eigenvalues of A: 

XA(A)= 1 + pf4 sin2 (nr/2M) 0 0, n = 1, 2, , M- 1, 

i.e., A is nonsingular and A-1 exists. By repeated substitution, we get 
k 

(8) Uk+1 = (A lB)k+luo + (A-lB)kA-lb' + , (A-'B)A-1b. 
i =o 

By consideration of eigenvalues, the matrix (A-1B - I) is easily found to be non- 
singular, and so (A-1B -I)-' exists. From (8): 

(9) ut+i = (A-lB)k+luo + (A-lB)kA-lb/ + (A lB)k+l - 
I A- 

(A'1B -I) 

(A-1B)T = (A-1B), thus, the spectral radius 

o(A 1B) = max IX|(A1 B)1, 
n 

I - p(l - 0)4 sin 2M| 

a(- )= max 2M< 1 
n I 1 +pO4 Sin2 

n, 
2M 

when 2 < 0 < 1. 
Thus, when 2 < 0 15 1, the solution of (8) converges to the stationary solution, U, 

U = lim uk = -(A-'B - I)A 1b QM_lb. 
k--~00 P 
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Since QM-1 is nonsingular, there is a one-one correspondence between U and b, and 
the equation above is written: 

PQM-lU = b. 

This constitutes a set of difference equations that is easily solved with respect to the 
components of U, giving 

U= (1-Ax, 1 -2Ax, ,1-(M-1)AX)T. 

This is seen to be the discrete analogue of the stationary solution of the system (1), 
given by (7.a), and so, the asymptotic convergence is proved. 

3. Solution Near the Singularity. The solution of the difference system (2), 
given by (9), shall now be developed in more detail by an eigenvector expansion, 
and is, at first, written in the following form: 

uk = (A B)k(Uo - U) + (A4lB)k-lAlb + U. 

The eigenvectors of QM..1, y, 

Yn=(in - sin 2 M ,sin (M - 1)M) 

constitute a basis. 
The expansion involves the summation of the series z"j1 n sin n-1, which is per- 

formed by integration with respect to ,3, complex representation of cos n3, summation 
of geometric series, and differentiation with respect to f3. 

C ~~~~~~ k 

1- i- p(l - 0)4 s in 2 1M 2M 
ir2M 

(1 0)2M 

+ 2p(P -1)AxM-1 
I- p - 0)4 sfin2M i)k1 . + 2pO(P - I)Ax E i7 k) sin -T sin j ' 

where us, k is written as a function of P. We note the analogy between this formula, 
when P = 1, and the formula (7). The optimum value, P1, of the parameter P, is 
determined by Pearson by minimizing the error vector 

(11) lid,- u(Pj)II = m Il, - ul(P)II, 
P 

where the Euclidean norm is taken, and 

Uk = (u(Ax, kAt), u(2Ax, kAt), * , u((M - I)Ax, kAt))T. 

Actually, what is done is introducing a parameter P into the numerical solution 
and choosing some optimum value for it. The parameter is given a strong connection 
to the singular point (0, 0). Thinking of the many other ways a correcting parameter 
could be introduced, it is not a priori evident that the connection between P and the 
point (0, 0) is specially attractive. 
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Formula (10) reveals that the parameter results in an additive "correction term". 
To discuss the features of this term in more detail, define 

Pi.k, j = 1, 2, , M - 1, k = 1, 2, 
by 

Uf,k(Pi,k) = u(jAx, kAt). 

(The "best way" of introducing a correcting parameter, P, would be one for which 
P. E is constant.) 

In analogy to (11), we defined Pk, k = 1, 2, * * , by 

l111k uk(Pk) I = min 11fik -uk(P)I1. 
P 

The distribution of Pj k, k = ,4, 9, j= 1, 2, ,13, 

100, At_10000 O=- 

is reported roughly on Fig. 1. 

P~~~~~~~~~~~~~~~~~~~~~~~~~ 

.2 

. 6 7 k - 1 3 
.8- 

I.4 

AX = , At=jio, 
I = I 

FIGURE 1 
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From Fig. 1, it is seen that the inequality, 0 < Pi k < 1, is not fulfilled (contrary 
to Pearson's supposition), and that Pi ., is far from being constant. 

k 1 2 3 4 5 . 9 

Pk , 0.816 0.889 0.917 0.928 0.935 ... 0.945 

TABLE 1 

AX1-10, At = I 0 = I 

From the table above, it is seen that Pk is not constant, i.e., the value of P that. 
minimizes the Euclidean norm of the error vector for k 1, does not minimize the 
norms of the error vectors for k = 2, 3, * - . (This is, of course, not surprising.) How- 
ever, noting that the multiplicative term, g, k, in (10), 

k-I 

If-1 - p(l - B)4 sitl-- 2 M hr . i zr 

g=i (~x I + 04 sin ir 2 2) M Af 21 

dinminishes as k and/or j increase, the value of P should become less important as k 
and/or j grow. To investigate this more closely, the effect of choosing P = 1 (the 
a priori most "natural" choice) is compared to the effect of choosing P = P. Define 

,ej,k(P) = UjAx, kAt) - Ui,k(P) = 2pOgj,k(Pi,k P). 

The results for k = 4 are reported in the following table. 

j es (P1) E1 4(l) 

1 0.0027 -0.0008 
2 0.0040 -0.0020 
3 0.0043 -0.0017 
4 0.0031 -0.0023 
5 0.0011 -0.0022 
6 -0.0004 -0.0022 
7 -0.0013 -0.0022 
8 -0.0011 -0.0016 
9 -0.0007 -0.0009 

10 -0.0004 -0.0005 
i1 -0.0002 -0.0002 

TABLE 2 
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In the case above, it would be rather hard to decide what value of P should be 
chosen. For k > 4, P = 1 would, in a way, be better than P = P1, whereas, for 
k = 1, 2, 3, P = P1 would, perhaps, be better than P = 1. Similar results hold for 
other values of Ax and At. 

In conclusion, it should be difficult to find an adequate criterion under which 
P = P1, generally, is a better value than, for example, P = 1. 

The calculation of Pi,, and Pk were carried out on the IBM/360 of the University 
of Bergen, using double-precision FORTRAN programs. 

Universitetet i Bergen 
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